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Two main concepts

Bayesian Plasticity - During learning, synapses take uncertainty into account

Synaptic Sampling - Weights are sampled from a probability distribution



Deterministic / Classical Model

PSP combine linearly V(t) = > wi(t)z;(t) + nu(t)
Target weights and Synapse potential Viar (t) = >, Wiar ()24 (2)
Feedback / error §(t) = Viar(t) — V(¢) + ns(2t)
The delta rule to change the mean PSP m; = ox; 0
/ \
Learning rate Presynaptljc term  Postsynaptic term

PSP: Post Synaptic Potential



Delta Rule

Am; = ax;d
Synapse 1 — certain about its weights and Synapse 2 — uncertain about its weights

Synapse 2 should have a larger impact of learning than synapse 1
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Always gives positive values — so that the
learning update does not change an
excitatory synapse and turn it inhibitor



Optimal Learning Rule
Am; = ax;0

Synapse 1 — certain about its weights and Synapse 2 — uncertain about its weights
Synapse 2 should have a larger impact of learning than synapse 1

Thus synapses keep track of probability distributions (log normal Probability distribution) -- Bayesian Plasticity
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Variable Learning rates - Bayesian Plasticity Ss



Comparison of Delta and Optimal Learning Rule
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Synaptic Sampling
PSP variability is a proxy for uncertainty - Synaptic Sampling Hypothesis

PSP variance = S7



Synaptic Sampling
PSP variability is a proxy for uncertainty - Synaptic Sampling Hypothesis

PSP variance = S7

The synapse uncertainty should fall as pre synaptic firing rate increases

Am; 1
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Combine bayesian Plasticity and Synaptic Sampling

The relative change in PSP amplitude amplitude is proportional to Synapse’s uncertainty

Am; PSPvariance
m; PSPmean

Normalized variability is inversely proportional to the firing rate
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Feedback / &
f(8) =6

Supervised Learning

Supervised Learning with Binary feedback f(5) = sign(5 - 9)

f(0) = 9]

Reinforcement Learning

Unsupervised Learning - Since there is no feedback signal we need information from x and find P(z|w:.r, Vier)



Inference

Inference is a two step process:

1. Synapse incorporate new data following Bayes Theorem

P(Mari | D) = P(Mary | diy Di(t — 1)) o< P(di|Aari) P(Atars| Di(t —

2. Synapse takes random changes of target weight into account
P()\tarz (t + 1 I D fd)\tarz /\tar i (t + 1)|/\tarz) ()\tar,z' IDz)

However, the exact distribution is too complex to work with.
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Inference Approximation

A Gaussian in the log-domain is chosen with mean p and Variance o?
P(Atari(t+1) | D(t — 1)) = N (Atar,is s, 07)
Corresponding mean m and variance s? over distribution w is:

m; = Ewig;|D(t — 1)] = ehitoi’ /2

82 = Var[wyy | D(t — 1) = (¢7 - 1)m? ~ o*m?



Classical vs Bayesian Learning
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Normalized learning rate is inversely related to the square root of the firing rate.
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Normalized learning rate is proportional to the normalized variability
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Deep Learning perspective

- Neural Networks are deterministic in nature

- Uncertainty is necessary in safety critical application eg. Lung cancer
prediction

- Bayesian Neural Networks (\Wednesday class)



