Multimodal Deep Learning

Purvanshi Mehta purvanshi.mehta11@gmail.com

Table of contents

- Introduction
- Challenges
 - Representation
 - \circ Translation
 - Alignment
 - \circ Fusion
 - \circ Co-Learning
- Interpretability in Multimodal Deep Learning

Aim of the presentation

- Identify challenges particular to Multimodal Learning
- Popular research topics in the field
- Brief of the problem I have been working on Interpretability in Multimodal Deep Learning

Multimodal Learning - Heterogeneous Information Sources

Challenge - 1) Representation

- How to combine the information from multiple sources?
- How to deal with different levels of noise?
- How to deal with missing data?

1) Representation - Ways of learning

Coordinated Representation

 ${\sf DeViSE-a\ deep\ visual-semantic\ embedding\ -\ Similarity\ model}$

Challenge - 2) Translation

{...a multicolored table in the middle of the room..., ...four red and white chairs and a colorful table, ...}

{...L-shaped room with walls
 that have 2 tones of gray...,
A dark room with a pool table...}

Translation

How to evaluate translations

Candidate: Football players gathering to contest something to collaborating officials. **Reference**: A football player in red and white is holding both hands up.

Challenge - 3) Alignment

1) Identify the direct relations between (sub)elements from two or more different modalities.

Alignment

Given an image and a caption we want to find the areas of the image corresponding to the caption's words or phrases

Alignement problems

- Few datasets with explicitly annotated alignments
- It is difficult to design similarity metrics between modalities
- Existence of multiple possible alignments and not all elements in one modality have correspondences in another

Challenge - 4) Fusion

- Signals not temporarily aligned
- Lack of interpretability of where is the prediction coming from
 - (This is what I am working on)

Challenge - 5) Co-Learning

- Aiding the modeling of a (resource poor) modality by exploiting knowledge from another (resource rich) modality.
- When one modality has lack of annotated data, noisy inputs and unreliable labels.

Colearning - Zero Shot learning

Using text embeddings to classify unseen classes of images

Interpretability in Multimodal Deep Learning

Problem statement -

Not every modality has equal contribution to the prediction

Interpretability in Multimodal Deep Learning

Solution -

We give different weights to different modalities

Real data experiments - Multimodal Sentiment Analysis(MOSI Dataset)

MUltimodal Sentiment Analysis

P1 and P2 contribution of each modality

$$N_{p} = \sum_{m=1}^{M} p_{m} < f_{w_{1}^{m}, w_{2}^{m} \dots w_{L-1}^{m}}^{m}(x), W_{L}^{m} > +b$$

Θ

Modified loss function with β weight given to each modality

$$\min_{\substack{w_1, w_2, \dots, w_L, \beta \\ \beta \in \mathbb{R}^M, \beta \ge 0, \|\beta\|_p \le 1}} \left(\sum_{i=1}^n \ell \left(\sum_{m=1}^M \sqrt{\beta_m} \langle w_L^m, f^m(x_i^m) \rangle + b, y_i \right) + \Lambda \sum_{l=1}^L \sum_{m=1}^M \|w_l^m\|_2^2 \right)$$

Modified loss function with β weight given to each modality

$$\min_{\substack{w_1, w_2, \dots, w_L, \beta \\ \beta \in \mathbb{R}^M, \beta \ge 0, \|\beta\|_p \le 1}} \left(\sum_{i=1}^n \ell \left(\sum_{m=1}^M \sqrt{\beta_m} \langle w_L^m, \underline{f}^m(x_i^m) \rangle + b, y_i \right) + \Lambda \sum_{l=1}^L \sum_{m=1}^M \|w_l^m\|_2^2 \right)$$

 $w_L^m \leftarrow \sqrt{\beta_m} w_L^m$, Let's make $\boldsymbol{\beta}$ trainable

$$\begin{split} \min_{\substack{w_1, w_2, \dots, w_L, \beta \\ t \in \mathbb{R}^M, \beta \ge 0, \|\beta\|_P \le 1}} \sum_{i=1}^n \ell \left(\sum_{m=1}^M \langle w_L^m, f_{w_1^m, w_2^m, \dots, w_{L-1}^m}^m(x_i^m) \rangle + b, y_i \right) \\ + \Lambda \sum_{l=1}^{L-1} \sum_{m=1}^M \|w_l^m\|_2^2 + \Lambda \sum_{m=1}^M \frac{\|w_L^m\|_2^2}{\beta_m}. \end{split}$$

Modified loss function with **β** weight given to each modality

Final Optimization problem

Tensor fusion

To allow interaction between modalities - take tensor product between modalities.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix} = \begin{bmatrix} a \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix} & b \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix} \\ c \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix} & d \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix} \\ = \begin{bmatrix} aa^* & ac^* & ba^* & bc^* \\ ab^* & ad^* & bb^* & bd^* \\ ca^* & cc^* & da^* & dc^* \\ cb^* & cd^* & db^* & dd^* \end{bmatrix}$$

Problem with interpretability and tensorfusion - Degree Inflation

Beta weights came to be higher for higher dimension weights - Always high for tensor fusion.

Degree Inflation - reason

When one modality learns constant features.

The information from the first modality can be

expressed in the tensorfusion.

Relevant source-with information $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix} = \begin{bmatrix} a \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix} \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix}$ $= egin{bmatrix} aa^{*} & ac^{*} & ba^{*} & bc^{*} \ ab^{*} & ad^{*} & bb^{*} & bd^{*} \ ca^{*} & cc^{*} & da^{*} & dc^{*} \ cb^{*} & cd^{*} & db^{*} & dd^{*} \end{bmatrix}$

Irrelevant source-constant

Iterative batch normalisation

We derived a batch norm which does not allow the lower dimension information to be represented in higher dimension(TensorFusion).

This method helps to remove noise from the data and give better accuracies.

Synthetic data experiment

• Relevant data - Sequences of length 100 (composed of 4 letters - ATGC) with a signature which defines the label

• Irrelevant data - Random 100 length sequences

Example - 1 as relevant source

Thank You